

Automated characterization of a bifurcated optical fiber bundle displacement sensor taking into account reflector tilting perturbation effects

J. Brandão FariaOctavian PostolacheJ. Dias PereiraP. Silva Girão

First published: 27 June 2000

https://doi.org/10.1002/1098-2760(20000820)26:4<242::AID-MOP12>3.0.CO;2-E

Citations: 1

Abstract

An optical displacement sensor using bifurcated fiber bundle technology is investigated here. An automated PC-based measurement system specially developed for the characterization of the optical displacement sensor is described. Experimental results are presented, showing how the transfer function of the sensor is affected by occasional tilting of the surface being monitored. A theoretical analysis based on a Gaussian beam approximation is also developed for the purpose of interpreting the reported experimental results. © 2000 John Wiley & Sons, Inc. Microwave Opt Technol Lett 26: 242–247, 2000.

We recommend

Modeling the Y-branched optical fiber bundle displacement sensor using a quasi-Gaussian beam approach

J. A. Brandão Faria, Microwave and Optical Technology Letters, 2000

Theoretical and experimental study on intensity modulation differential optical fiber angular displacement sensor

Shenlong Zha et al., Microwave and Optical Technology Letters, 2021

General models of optical-fiber-bundle displacement sensors

Huimin Cao et al., Microwave and Optical Technology Letters, 2005

Temperature insensitive fiber optical displacement sensors based on double fiber Bragg gratings

Ming Jiang et al., Microwave and Optical Technology Letters, 2013

Study on fiber Bragg grating displacement sensor with angle steel structure

Xie Kai et al., Opto-Electronic Engineering, 2018

Self-mixing interferometry based on nanometer fringes and polarization flipping

Zhaoli Zeng, Chinese Optics Letters, 2012

BRILLOUIN-BASED FIBER-OPTICS SENSORS FOR VECTORIAL DISLOCATION MONITORING OF PIPELINES

World Scientific

Sensors and Microsystems

World Scientific

VALIDITY OF A FBG-BASED SMART SOCK SYSTEM FOR MEASURING TOE GRIP FUNCTION IN HUMAN FOOT

YIXUAN LEOW et al., Journal of Mechanics in Medicine and Biology, 2020

Fiber-optic displacement sensor using a multimode bundle fiber

Moh. Yasin et al., Microwave and Optical Technology Letters, 2008

Powered by TREND MD

Download PDF

About Wiley Online Library

Privacy Policy Terms of Use Cookies Accessibility

Help & Support

Contact Us
Training and Support
DMCA & Reporting Piracy

Opportunities

Subscription Agents Advertisers & Corporate Partners

Connect with Wiley

The Wiley Network Wiley Press Room

Copyright © 1999-2021 John Wiley & Sons, Inc. All rights reserved